Circular coloring and circular flow in signed graphs

Zhouningxin Wang

AWM Student Chapter, SFU

19th Oct 2022

Jaeger's circular flow conjecture

The 4-color theorem [AH76]

Every planar graph is 4-colorable.

[Tut66] Every cubic bridgeless planar graph admits a nowhere-zero 4-flow.

Tutte's 3-flow conjecture [Tut66]

Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Jaeger's circular flow problem [Jae84]

Every 4k-edge-connected graph admits a circular $\frac{2k+1}{k}$ -flow.

- disproved for $k \ge 3$ [HLWZ18];
- verified for 6k-edge-connectivity [LTWZ13].

Start from the 4-color theorem

Jaeger-Zhang Conjecture

Jaeger-Zhang Conjecture [Zha02]

Every planar graph of odd-girth at least 4k + 1 admits a circular $\frac{2k+1}{k}$ -coloring.

- k = 1: Grötzsch's theorem;
- *k* = 2: verified for odd-girth 11 [DP17; CL20];
- k = 3: verified for odd-girth 17 [CL20; PS22];
- *k* ≥ 4:
 - verified for odd-girth 8k 3 [Zhu01];
 - verified for odd-girth $\frac{20k-2}{3}$ [BKKW02];
 - verified for odd-girth 6k + 1 [LTWZ13].

Signed graphs

Signed graphs

- A signed graph (G, σ) is a graph G together with an assignment σ : E(G) → {+,-}.
- The sign of a closed walk (especially, a cycle) is the product of signs of all the edges of it.
- A switching at a vertex v is to switch the signs of all the edges incident to this vertex.

Theorem [Zas82]

Signed graphs (G, σ) and (G, σ') are switching equivalent if and only if they have the same set of negative cycles.

Signed graphs

Homomorphisms of signed graphs

 We say (G, σ) admits a homomorphism to (H, π), write (G, σ) → (H, π), if there exists σ' ≡ σ and a mapping φ : V(G) → V(H) that preserves the adjacencies and the signs of edges.

Circular colorings and circular flows in signed graphs

Circular $\frac{p}{q}$ -coloring of signed graphs

Definition [NWZ21]

Given a positive even integer p and a positive integer q satisfying $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$ -coloring of (G, σ) is a mapping $\varphi : V(G) \rightarrow \{0, 1, ..., p-1\}$ such that for any positive edge uv,

$$q \leq |\varphi(u) - \varphi(v)| \leq p - q,$$

and for any negative edge uv,

$$|arphi(u)-arphi(v)|\leq rac{p}{2}-q \;\; ext{or}\;\; |arphi(u)-arphi(v)|\geq rac{p}{2}+q.$$

The circular chromatic number of (G, σ) is

$$\chi_{c}(G,\sigma) = \min\{\frac{p}{q} \mid (G,\sigma) \text{ admits a circular } \frac{p}{q} \text{-coloring}\}.$$

Signed circular cliques

Lemma [NWZ21]

A signed graph (G, σ) admits a circular $\frac{p}{q}$ -coloring if and only if it admits an edge-sign preserving homomorphism to the signed circular clique $K_{p;q}^s$.

Figure: $K_{8;3}^{s} \prec K_{6;2}^{s} \prec K_{10;3}^{s} \prec K_{4;1}^{s}$

Circular colorings and circular flows in signed graphs

Circular $\frac{p}{q}$ -flow in signed graphs

Definition [LNWZ22+]

Given a positive even integer p and a positive integer q where $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$ -flow in (G, σ) is a pair (D, f) where D is an orientation on G and $f : E(G) \to \mathbb{Z}$ satisfies the following conditions.

- For each positive edge e, $|f(e)| \in \{q, ..., p-q\};$
- For each negative edge e, $|f(e)| \in \{0, ..., \frac{p}{2} q\} \cup \{\frac{p}{2} + q, ..., p 1\};$
- For each vertex v of (G, σ) , $\sum_{(v,w)\in D} f(vw) = \sum_{(u,v)\in D} f(uv)$.

The circular flow index of (G, σ) is

$$\Phi_{c}(G,\sigma) = \min\{\frac{p}{q} \mid (G,\sigma) \text{ admits a circular } \frac{p}{q} \text{-flow}\}.$$

Circular colorings and circular flows in signed graphs

Circular
$$\frac{p}{q}$$
-coloring and circular $\frac{p}{q}$ -flow

Lemma [LNWZ22+]

Given a signed plane graph (G, σ) and its dual signed graph (G^*, σ^*) ,

$$\chi_c(G,\sigma) = \Phi_c(G^*,\sigma^*).$$

Figure: Circular $\frac{8}{3}$ -coloring of C_{-4} Figure: Circular $\frac{8}{3}$ -flow in C_{-4}^*

Circular colorings and circular flows in signed graphs

Circular $\frac{2\ell}{\ell-1}$ -coloring and circular $\frac{2\ell}{\ell-1}$ -flow

Let k be a positive integer.

- $\chi_c(G,+) \leq \frac{2k+1}{k}$ if and only if $(G,+) \rightarrow C_{2k+1}$.
- For bipartite G, $\chi_c(G, \sigma) \leq \frac{4k}{2k-1}$ if and only if $(G, \sigma) \to C_{-2k}$ [NW21+].

Homomorphisms of signed bipartite graphs

Proposition [HN90, NPW22]

For any integer k, a graph G is k-colorable if and only if $T_{k-2}(G)$ admits a homomorphism to C_{-k} .

4-color theorem restated

Given a planar graph G, the signed bipartite graph $T_2(G)$ admits a homomorphism to C_{-4} .

Lemma

- [NRS15] $G \to H \Leftrightarrow S(G) \to S(H)$;
- [NWZ21] Given a graph G, we have $\chi_c(S(G)) = 4 \frac{4}{\chi_c(G) + 1}$;
- [NRS15] $\chi(G) \leq k \Leftrightarrow S(G) \rightarrow (K_{k,k}, M)$ for $k \geq 3$.

Circular coloring and circular flow Circular colorings and circular flows in signed graphs

Homomorphisms of signed bipartite graphs

4-color theorem restated [KNNW21+, NW21+]

Let G be a planar graph.

- $S(G) \rightarrow S(K_4);$
- $S(G)
 ightarrow \hat{B}^s_{16;5};$

•
$$S(G) \rightarrow (K_{4,4}, M)$$
.

Signed bipartite analog of Jaeger-Zhang conjecture

Signed bipartite analog of Jaeger's circular flow conjecture

Every g(k)-edge-connected Eulerian signed graph admits a circular $\frac{4k}{2k-1}$ -flow.

Signed bipartite analog of Jaeger-Zhang conjecture [NRS15]

Every signed bipartite planar graph of negative-girth at least f(k) admits a homomorphism to C_{-2k} .

- k = 2: verified for negative-girth 8 (best possible) [NPW22];
- k = 3, 4: verified for negative-girth 14 and 20 [LSWW22+];
- *k* ≥ 5:
 - verified for negative-girth 8k 2 [CNS20];
 - verified for negative-girth 6k 2 [LNWZ22+].

Thanks for your attention!