Circular coloring and circular flow in signed graphs

Zhouningxin Wang

AWM Student Chapter, SFU

19th Oct 2022

Jaeger's circular flow conjecture

The 4-color theorem [AH76]

Every planar graph is 4-colorable.
[Tut66] Every cubic bridgeless planar graph admits a nowhere-zero 4-flow.

Tutte's 3-flow conjecture [Tut66]

Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Jaeger's circular flow problem [Jae84]

Every $4 k$-edge-connected graph admits a circular $\frac{2 k+1}{k}$-flow.

- disproved for $k \geq 3$ [HLWZ18];
- verified for $6 k$-edge-connectivity [LTWZ13].

Jaeger-Zhang Conjecture

Jaeger-Zhang Conjecture [Zha02]
Every planar graph of odd-girth at least $4 k+1$ admits a circular $\frac{2 k+1}{k}$-coloring.

- $k=1$: Grötzsch's theorem;
- $k=2$: verified for odd-girth 11 [DP17; CL20];
- $k=3$: verified for odd-girth 17 [CL20; PS22];
- $k \geq 4$:
- verified for odd-girth $8 k-3$ [Zhu01];
- verified for odd-girth $\frac{20 k-2}{3}$ [BKKW02];
- verified for odd-girth $6 k+1$ [LTWZ13].

Signed graphs

- A signed graph (G, σ) is a graph G together with an assignment $\sigma: E(G) \rightarrow\{+,-\}$.
- The sign of a closed walk (especially, a cycle) is the product of signs of all the edges of it.
- A switching at a vertex v is to switch the signs of all the edges incident to this vertex.

Theorem [Zas82]

Signed graphs (G, σ) and (G, σ^{\prime}) are switching equivalent if and only if they have the same set of negative cycles.

Homomorphisms of signed graphs

- We say (G, σ) admits a homomorphism to (H, π), write $(G, \sigma) \rightarrow(H, \pi)$, if there exists $\sigma^{\prime} \equiv \sigma$ and a mapping $\varphi: V(G) \rightarrow V(H)$ that preserves the adjacencies and the signs of edges.

Circular $\frac{p}{q}$-coloring of signed graphs

Definition [NWZ21]

Given a positive even integer p and a positive integer q satisfying $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$-coloring of (G, σ) is a mapping $\varphi: V(G) \rightarrow\{0,1, \ldots, p-1\}$ such that for any positive edge $u v$,

$$
q \leq|\varphi(u)-\varphi(v)| \leq p-q
$$

and for any negative edge $u v$,

$$
|\varphi(u)-\varphi(v)| \leq \frac{p}{2}-q \text { or }|\varphi(u)-\varphi(v)| \geq \frac{p}{2}+q
$$

The circular chromatic number of (G, σ) is

$$
\chi_{c}(G, \sigma)=\min \left\{\left.\frac{p}{q} \right\rvert\,(G, \sigma) \text { admits a circular } \frac{p}{q} \text {-coloring }\right\}
$$

Signed circular cliques

Lemma [NWZ21]

A signed graph (G, σ) admits a circular $\frac{p}{q}$-coloring if and only if it admits an edge-sign preserving homomorphism to the signed circular clique $K_{p ; q}^{s}$.

Figure: $K_{8 ; 3}^{s} \prec K_{6 ; 2}^{s} \prec K_{10 ; 3}^{s} \prec K_{4 ; 1}^{s}$

Circular $\frac{p}{q}$-flow in signed graphs

Definition [LNWZ22+]

Given a positive even integer p and a positive integer q where $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$-flow in (G, σ) is a pair (D, f) where D is an orientation on G and $f: E(G) \rightarrow \mathbb{Z}$ satisfies the following conditions.

- For each positive edge $e,|f(e)| \in\{q, \ldots, p-q\}$;
- For each negative edge $e,|f(e)| \in\left\{0, \ldots, \frac{p}{2}-q\right\} \cup\left\{\frac{p}{2}+q, \ldots, p-1\right\}$;
- For each vertex v of $(G, \sigma), \sum_{(v, w) \in D} f(v w)=\sum_{(u, v) \in D} f(u v)$.

The circular flow index of (G, σ) is

$$
\Phi_{c}(G, \sigma)=\min \left\{\left.\frac{p}{q} \right\rvert\,(G, \sigma) \text { admits a circular } \frac{p}{q} \text {-flow }\right\} .
$$

Circular $\frac{p}{q}$-coloring and circular $\frac{p}{q}$-flow

Lemma [LNWZ22+]

Given a signed plane graph (G, σ) and its dual signed graph $\left(G^{*}, \sigma^{*}\right)$,

$$
\chi_{c}(G, \sigma)=\Phi_{c}\left(G^{*}, \sigma^{*}\right) .
$$

Figure: Circular $\frac{8}{3}$-coloring of C_{-4}

Figure: Circular $\frac{8}{3}$-flow in C_{-4}^{*}

Circular colorings and circular flows in signed graphs

Circular $\frac{2 \ell}{\ell-1}$-coloring and circular $\frac{2 \ell}{\ell-1}$-flow

Figure: C_{-2}

Figure: C_{3}

Figure: C_{-4}

Figure: C_{5}

Let k be a positive integer.

- $\chi_{c}(G,+) \leq \frac{2 k+1}{k}$ if and only if $(G,+) \rightarrow C_{2 k+1}$.
- For bipartite $G, \chi_{c}(G, \sigma) \leq \frac{4 k}{2 k-1}$ if and only if $(G, \sigma) \rightarrow C_{-2 k}$ [NW21+].

Homomorphisms of signed bipartite graphs

Proposition [HN90, NPW22]

For any integer k, a graph G is k-colorable if and only if $T_{k-2}(G)$ admits a homomorphism to C_{-k}.

4-color theorem restated

Given a planar graph G, the signed bipartite graph $T_{2}(G)$ admits a homomorphism to C_{-4}.

Lemma

- [NRS15] $G \rightarrow H \Leftrightarrow S(G) \rightarrow S(H)$;
- [NWZ21] Given a graph G, we have $\chi_{c}(S(G))=4-\frac{4}{\chi_{c}(G)+1}$;
- [NRS15] $\chi(G) \leq k \Leftrightarrow S(G) \rightarrow\left(K_{k, k}, M\right)$ for $k \geq 3$.

Circular colorings and circular flows in signed graphs

Homomorphisms of signed bipartite graphs

4-color theorem restated [KNNW21+, NW21+]

Let G be a planar graph.

- $S(G) \rightarrow S\left(K_{4}\right)$;
- $S(G) \rightarrow \hat{B}_{16 ; 5}^{s}$;
- $S(G) \rightarrow\left(K_{4,4}, M\right)$.

Figure: $S\left(K_{4}\right)$

Figure: $\hat{B}_{16 ; 5}^{s}$

Figure: $\left(K_{4,4}, M\right)$

Signed bipartite analog of Jaeger-Zhang conjecture

Signed bipartite analog of Jaeger's circular flow conjecture

Every $g(k)$-edge-connected Eulerian signed graph admits a circular $\frac{4 k}{2 k-1}$-flow.

Signed bipartite analog of Jaeger-Zhang conjecture [NRS15]

Every signed bipartite planar graph of negative-girth at least $f(k)$ admits a homomorphism to $C_{-2 k}$.

- $k=2$: verified for negative-girth 8 (best possible) [NPW22];
- $k=3,4$: verified for negative-girth 14 and 20 [LSWW22+];
- $k \geq 5$:
- verified for negative-girth $8 k-2$ [CNS20];
- verified for negative-girth $6 k-2$ [LNWZ22+].

Thanks for your attention!

